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Estimates of the eigenvalues C belonging to the manifold of solutions of the Orr- 
Sommerfeld equation are constructed by application of elementary isoperi- 
metric inequalities. The inequalities also lead to a considerable improvement on 
the estimate of (aR) regions of linear stability given by Synge. 

As is well known (e.g. see Synge (1938) or Lin (1955, pp. 31-2)) the real and 
imaginary parts of the eigenvalue 

of the Orr-Sommerfeld problem 
c = cr + i C i ,  

z 
( 77 - C )  (4” - a”) - U“$ = - - (p - 2a2$“ + a4$) : 

CtR 

where 

and a, R are real non-negative parameters. Consider functions U(y) with two 
continuous derivatives and deduce results from (2) and (3) for elements gi of a 
complex-valued Hilbert space, 8, completed under the norm 1; by the addition 
of limit points of sequences of four times continuously differentiable functions 
satisfying (1  b) .  

The fist result is obtained from the estimate 

= lwa’= I U’(Y)I, (4a, b )  
Y E LO, 11 

which has been given by Synge (1938) and follows from Schwarz’s inequality in 
an obvious way. 
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THEOREM 1. Let C(a, R) be any eigenvalue of (1 a, b ) .  Then 

Moreover, no amplijed disturbances (ci > 0) of ( 1  a, b)  exist i f  

aRq < f(a) = max [M,, M,], (6) 

where M, = (4.73)'n + 2 % ~ ~ ~  (6a )  

and M2 = (4 .73)'~+ 2a2n. (6b) 
In  the limit aR+m the estimate ( 5 )  reduces to a known inviscid result of 

Heiland (1953). It is clear that the inviscid estimate always dominates the ampli- 
ficationrate in the real fluid. Of course, for finite aR, ( 5 )  is areal improvement over 
the inviscid estimate. 

The estimate (6) greatly improves the result 

aRq < g ( a )  = max [A,, A,, 4 1 ,  
A, = 2W(a2+ l)t, 

A, = 2Qa( 1 - a2 + a3 + a4)4 
A,  = (2a2+ l)*(4a4+ l)), 

which has been given by Synge (1938). For example, from (6) we calculate 

s(a) whereas (7)  gives 2.74 z min- 
a a  

(see figure 1). The estimate (6) (and (7) )  gives sufficient conditions for stability to 
small-amplitude disturbances governed by (1 a ,  b). The application of Squires' 
theorem, which leads to (1 a, b ) ,  restricts deductions from (2) to two-dimensional 
disturbances periodic in the stream direction. In  the equivalent non-linear 
problem it is the cross-stream disturbances which give the energy functional its 
minimum value (Joseph 1966). 

I should like to make one final remark relative to (6) (or ( 7 ) )  before proving the 
theorem. The estimates (6) and (7) share with true neutral curves the feature that 
upper and lower branches of these curves bend to the right. For each fixed value 
of R there exists a value amin below which there is linear stability and a value 
a m a x  above which there is linear stability. Above a m a x  the disturbance vorticity 
is so great that dissipation overcomes production of energy. On the other hand 
(6) and ( 7 )  also indicate that for every finite a there exists an R(a) above which 
linear stability cannot be deduced. This feature is not shared by true neutral 
curves. These exhibit a cut-off a = a, above which there is always linear stability, 
independent of R. In  asymptotic theory neutral curves are formed from a trun- 
cated version of (1 a)  : 

( U  - c,) ($"-Lx'~$) - U"r$ = - (i /aR) @" 

and (1 b) .  The bending to the right of the upper branch of (6) (or (7)) is clearly a 
consequence of the dissipation integrals 

2a212, + a41& 
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These are precisely the terms which are dropped in the asymptotics. It follows 
that dissipation of disturbance vorticity cannot explain the cut-off a and that this 
qualitative behaviour of the neutral curve, on the one hand, and (6) or (7 ) ,  on the 
other, have nothing in common. 
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FIGURE 1. Linear stability bounds for the Orr-Sommerfeld equation. The region of certain 
linear stability lies to the left of the curve eg (equations (6)) : ef is the graph of M,(a)/cc, 
fg is the graph of Ml(a)/a.  The curve od is the graph of Synge’s bounds (equations (7) ) :  
oa is the graph of A,(a)/a; ab is the graph of A3(a)/a; bc is the graph of Al(a)/cc; cd is 
again the graph of A,(a)/a. 

Proof of Theorem 1 

In  the real-valued Hilbert space H corresponding to i7 the following inequalities 
hold : 1; 2 7r2I$, 

I ;  > n2q, ( 8 b )  

I:  > (4*73)4I;. (8c) 

The value (4.73)4 is the smallest eigenvalue of a vibrating rod with displacement 
satisfying (1 b )  (Rayleigh 1878). These inequalities also hold in I?. Consider 

q5 = a+ib, 

where a, b E H .  Then 1:(a) > n2I$(a), I?(b) 2 +1$(b) (9) 

and by addition I;(#) 2 m21$(q5). 

Equations ( 8 b )  and ( 8 ~ )  follow in the same way. 
I next use the estimates (8) to establish the necessary preliminary inequalities. 

(10 a)  2 4  Il < 1; + $I$, 

1; + 2a21: + a41$ = (1: + a21?) + a2(I? + a”$) (n2 + a2) (1; + GI:), (10 b)  
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The estimate ( 5 )  follows easily from (4), (loa) and (lob). To obtain (6) consider 
the set of values {aR) for which the left-hand side of (4) is negative. Then apply 
the estimate (1Oc). 

I turn next to estimates of the wave speed c,. The result here is as follows. 

THEOREM 2 .  Let C(a, R) be any eigenvalue of (1 a, b ) .  Then the following inequali- 

(11 4 

Here Urnax, Uka,, Umin and U& are maximum and minimum values on the range 
of U(y) and U"(y) for y E [0,1]. 

The estimates (11) considerably improve Pai's (1954) extension, 

of the wave speed bounds given by Synge (1938) for Couette and Poiseuille 
flow. 

These estimates restrict the wave speed c, for all parallel motions to an 
interval only slightly larger than the range of U .  Unlike previous estimates 
(Synge 1938; Pai 1954) (11) shows that c, is bounded above and below, uni- 
formly in 01. 

I am unaware of calculations leading to negative wave speeds in situations 
covered by ( l l c ) .  However, the negative wave speeds outside the range of U 
which are consistent with ( l l b )  evidently do occur in Jeffery-Hamel flow in 
diverging channels with back flow (Eagles 1966). 

Proof of Theorem 2 
From (3) we find that 
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where yl, y2e (0,l)  are mean values. It is clear that in the situations (a, b,  c) speci- 
fied in the theorem we have 

The estimates (11) now follow easily from (12) and (13). 

This work was supported under NSF grant GK-1838. 
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